Security and Forensics from a Cloud Provider's Perspective

SECURING THE CLOUD

About me. About this talk.

Introduction

About TMRK and me

- Terremark, a Verizon Company
 - Full stack of services: colo, hosting, cloud, security
 - Strong Federal/Public Sector business
- Secure Information Services
 - History with IR against TAGs
 - Analytics is the operational piece
 - Years of eating our own dog food

Federal Datacenter Consolidation

- Improve efficiencies in government IT
 - Express goal of reducing number of datacenters, amount of square feet, and number of servers
 - Shared services (multi-tenancy) is a core concept
- Cloud is the leading approach
 - Many agencies have already moved key processing to the cloud
 - As successful deployments add up, the rate of adoption is accelerating
- Perceived concerns around security and forensics
 - There are good answers!

Cloud Infrastructure is different

- Cloud technologies bring new possibilities
 - Data/image acquisition techniques
 - In situ analysis
- They also brings challenges
 - Privacy & secure data separation
 - Implications for operational continuity
- Vague models and mismatched expectations
 - Who's responsible for the security of what?

Cloud Infrastructure is not magic

- Cloud infrastructure is still infrastructure
 - Providers manage at least a hypervisor farm and back-end equipment (laaS)
 - PaaS and SaaS control more and more of the underlying platforms
- I'll be talking mostly about laaS
 - PaaS and SaaS looks more like a specific application
 - Integrated into a larger customer environment
 - Forensics are more specialized, out of scope for this talk
 - But PaaS and SaaS providers usually run laaS environments under the hood, so much of this applies.

How are clouds built? Managed? Secured? What's different, from a forensics point of view?

Overview of Cloud Operations

Infrastructure is (mostly) the same

- Cloud providers build big clusters
 - Racks of compute
 - Racks of storage
- Value-add is in the multi-tenancy
 - Front-end software for users
 - Back-end software for support staff
- Differentiation is in add-ons and services
 - Integrated security, back-up, and other services
 - Better plumbing, support, and overall flexibility

Ye Olde Cloud Architecture

Cloud Security is (mostly) security

- Providers still need to solve the classical problems
- At a high level: Visibility, instrumentation, staffing, operational integration
- Specific examples: Patching, firewalls, IDS, A/V
- Here again, multi-tenancy is the heart of the Cloud difference
 - Shared instrumentation for greater ROI
 - Analysis across multiple customers for enhanced situational awareness

Cloud Forensics is (mostly) the same

- It all rests on solid fundamentals:
 - Identifying relevant data
 - Forensically sound acquisition and analysis
- I.e., disk and log data, as well as memory forensics and other emerging disciplines
- Multi-tenancy is one big difference
 - Implications of a shared environment
 - Side-effects matter, too: centralized log aggregation, integrated backup data available, etc.
- Ubiquitous virtualization is another
 - Whole world of TTPs become available
 - E.g., snapshots are always possible

Cloud as a kind of outsourcing

- Consider classical approaches to full-service outsourcing
 - Outside firm (EDS, GDIT, etc.)
 - Contractual guarantees for performance and security
 - Benefits include reduced cost, better access to expertise
 - Challenges include clear priorities and responsibilities
- Cloud is fundamentally similar
 - Ubiquitous virtualization is core enabler
 - Lower entry barrier for providers, so more vendors, feature sets, and price points

Full vs. Partial resource allocation.

Virtual-only vs. Physical instrumentation.

Practical Application in Popular Operating Models

Full Resource Allocation

- Capacity to run all customers at 100%
 - Excess capacity can be used for "burst"
 - Guaranteed minimum performance
- Tend to be more robust infrastructures
 - Target market values uptime and security
 - More investment in instrumentation, etc.
- Tend to be more full-service providers
 - Managed services layered over base cloud

Partial Resource Allocation

- More optimized use of physical resources
 - Less wasted infrastructure == lower cost
 - Ad-hoc resource allocation == complex data isolation
- Cost-sensitive target market
 - Developers, startups, incubators, etc.
 - Quick PoC deployments
- More of a Wild West feel
 - Bad guys fit the target market description

Physical Instrumentation

- Psst! There's a physical infrastructure here!
 - Visibility resolution depends on details
 - Lots of COTS instrumentation available
 - Easier to guarantee no impact from sensors
- More precisely: non-virtualization-aware
 - Leverage the same stack for cloud and noncloud
 - Instrument hosts at the OS level: very doable

Virtual-only Instrumentation

- Leverage hypervisor for visibility
 - Network, memory, disk visibility possible
 - Access methods are varied and ever-changing
- Growing number of "virtual appliances"
 - Many of these are non-virtualization-aware!

Privacy and data separation. Isolating operational impacts. Dealing with well-meaning but uninformed courts and LE.

Challenges Unique to the Cloud

Privacy and data separation

- Multi-tenancy implies logical, rather than physical data separation
- Configuration management is critical
 - For cloud providers performing IR or forensics
 - Need multiple logical control layers to compensate
 - Still, sometimes a small difference in control configuration is the only barrier
- IR or forensics often done by other party
 - Thorough work would uncover any data leakage from other customer environments...

Isolating operational impact

- Various ways a single customer can impact performance
 - Malicious activity or compromised environment
 - Normal operation of non-optimized application
 - During IR/subpoena/etc: forensic activity is IOintensive
- No room for operational fragility
 - Robust workload distribution
 - Consider impacts of specialized activities

Collaborating with courts and LE

- Courts and agencies often optimized to deal with non-Cloud environments
 - E.g., with physical disk imaging tools, etc.
- Often don't understand the impact of their requests
 - Overly-specific subpoenas may specify actual steps to be taken
 - More effective and efficient techniques may be available
- Providers should nurture relationships with local, state and federal LE

Solid infrastructure foundations. Tools for customer-specific visibility and control. Processes for graceful degradation.

Solutions to Cloud-Specific Challenges

Prerequisite: solid foundations

- Controls
 - Part of a robust cloud architecture
 - Layered and tightly managed
- Documentation
 - Transparency can validate TTPs
- Skill sets
 - Deep collaboration among specialist teams
 - Network, OS, compute, storage, security, ...

Fraud Detection

- Technological
 - Anomalous environment configurations
 - Learn patterns of fraudulent behavior
- Contractual
 - E.g., require up-front payments
 - Impactful to legitimate small customers
- Operational
 - E.g., verify contact information

Resource constraints

- Technological
 - Robust performance monitoring
 - Graceful performance degradation
- Contractual
 - Allow flexibility in case of performance impacts
 - Dedicated resources makes this easy
- Operational
 - Disciplined capacity planning

Comfort level for LE

- Technological
 - Graceful degradation and isolation for acquisition
 - Compatibility with tools common in LE use
- Contractual
 - Notification and transparency requirements
 - Reduced SLAs during subpoenas or etc.
- Operational
 - Explicitly plan for likely LEO interactions

Chops == Chops. Prepare for the operational differences.

Conclusions

Lean on the Fundamentals

- Take care about multi-tenancy
 - Respect customer privacy
 - Isolate operational impacts
- Several unique benefits
 - Snapshots and related techniques are a godsend
 - Prepare for in situ analysis to avoid data transfer
- Most of the forensic problem is very similar
 - Your non-cloud experience will serve you well

Prepare for the differences

- Get access to multiple cloud environments
 - Individual providers as well as mash-ups
 - Set up forensic scenarios to work through
- Make a cloud-specific toolkit
 - Most in situ analysis requires a tooled-up VM
 - Have tools to deal with various snapshot formats
- Contact cloud providers
 - They can give you valuable insight for when your next case involves their infrastructure

Thank you!

Questions?